

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Flask-HashFS 0.3.0 documentation

Flask-HashFS

[image: version] [https://pypi.python.org/pypi/flask-hashfs/] [image: travis] [https://travis-ci.org/dgilland/flask-hashfs] [image: coveralls] [https://coveralls.io/r/dgilland/flask-hashfs] [image: license] [https://pypi.python.org/pypi/flask-hashfs/]

Flask extension for HashFS [https://github.com/dgilland/hashfs], a content-addressable file management system.

What is HashFS?

HashFS is a content-addressable file management system. What does that mean? Simply, that HashFS manages a directory where files are saved based on the file’s hash.

Typical use cases for this kind of system are ones where:

	Files are written once and never change (e.g. image storage).

	It’s desirable to have no duplicate files (e.g. user uploads).

	File metadata is stored elsewhere (e.g. in a database).

What is Flask-HashFS?

Flask-HashFS is a Flask extension that integrates HashFS into the Flask ecosystem.

Links

	Project: https://github.com/dgilland/flask-hashfs

	Documentation: http://flask-hashfs.readthedocs.org

	PyPI: https://pypi.python.org/pypi/flask-hashfs/

	TravisCI: https://travis-ci.org/dgilland/flask-hashfs

Quickstart

Install using pip:

pip install Flask-HashFS

Initialization

from flask import Flask
from flask_hashfs import FlaskHashFS

app = Flask(__name__)
fs = FlaskHashFS()

Configure Flask-HashFS to store files in /var/www/data/uploads and give them a route prefix at /uploads.

app.config.update({
 'HASHFS_HOST': None,
 'HASHFS_PATH_PREFIX': '/uploads',
 'HASHFS_ROOT_FOLDER': '/var/www/data/uploads',
 'HASHFS_DEPTH': 4,
 'HASHFS_WIDTH': 1,
 'HASHFS_ALGORITHM': 'sha256'
})

fs.init_app(app)

Usage

Use Flask-HashFS to manage files using HashFS.

with app.app_context():
 # Store readable objects or file paths
 address = fs.put(io_obj, extension='.jpg')

 # Get a file's hash address
 assert fs.get(address.id) == address
 assert fs.get(address.relpath) == address
 assert fs.get(address.abspath) == address
 assert fs.get('invalid') is None

 # Get a BufferedReader handler
 fileio = fs.open(address.id)

 # Or using the full path...
 fileio = fs.open(address.abspath)

 # Or using a path relative to fs.root
 fileio = fs.open(address.relpath)

 # Delete a file by address ID or path
 fs.delete(address.id)
 fs.delete(address.abspath)
 fs.delete(address.relpath)

For direct access to the HashFS instance, use the client attribute.

fs.client
assert isinstance(fs.client, flask_hashfs.HashFS)

Generate URLs for HashFS content.

with app.test_request_context():
 fs.url_for('relative/file/path')

For more details, please see the full documentation at http://flask-hashfs.readthedocs.org and http://hashfs.readthedocs.org.

Guide

	Installation

	API Reference

Project Info

	License

	Versioning

	Changelog

	Authors

	Contributing

Indices and Tables

	Index

	Module Index

	Search Page

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-HashFS 0.3.0 documentation

Installation

flask-hashfs requires Python >= 2.7 or >= 3.3.

To install from PyPI [https://pypi.python.org/pypi/flask-hashfs]:

pip install flask-hashfs

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-HashFS 0.3.0 documentation

API Reference

The flask-hashfs module.

Flask extension for HashFS, a content-addressable file management system.

	
class flask_hashfs.FlaskHashFS(app=None)[source]

	Flask extension for storing files on file system using hashfs.

Configuration values:

	HASHFS_HOST
	Host where files are served.

Set if files are served from a different host than
application.

Defaults to None which uses
flask.request.host_url.

	HASHFS_PATH_PREFIX
	URL path prefix where files are served.

Defaults to ''.

	HASHFS_ROOT_FOLDER
	Root folder to save files.

Must be set.

	HASHFS_DEPTH
	Number of nested folders to use when saving files.

Defaults to 4.

	HASHFS_WIDTH
	Width of each nested subfolder.

Defaults to 1.

	HASHFS_ALGORITHM
	Hashing algorithm to use when computing content
hash.

Defaults to 'sha256'.

	
__getattr__(attr)[source]

	Proxy all other attribute access to underlying HashFS instance.

Please see http://hashfs.readthedocs.org/ for further details.

	
client

	Underlying HashFS instance.

	
url_for(relpath, external=True)[source]

	Return URL for path relative to HASHFS_ROOT_FOLDER.

	Parameters:	
	relpath (str) – Relative path to HASHFS_ROOT_FOLDER where file
is located.

	external (bool) – Whether to include host in URL.

	Returns:	URL for path.

	Return type:	str

Note

This function builds the URL with the assumption that relpath is
a valid file path. It does not check for file existence.

	
class flask_hashfs.HashAddress[source]

	File address containing file’s path on disk and it’s content hash ID.

	
id

	str

Hash ID (hexdigest) of file contents.

	
relpath

	str

Relative path location to HashFS.root.

	
abspath

	str

Absoluate path location of file on disk.

	
is_duplicate

	boolean, optional

Whether the hash address created was
a duplicate of a previously existing file. Can only be True
after a put operation. Defaults to False.

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-HashFS 0.3.0 documentation

License

The MIT License (MIT)

Copyright (c) 2015, Derrick Gilland

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-HashFS 0.3.0 documentation

Versioning

This project follows Semantic Versioning [http://semver.org/] with the following caveats:

	Only the public API (i.e. the objects imported into the flask-hashfs module) will maintain backwards compatibility between MINOR version bumps.

	Objects within any other parts of the library are not guaranteed to not break between MINOR version bumps.

With that in mind, it is recommended to only use or import objects from the main module, flask-hashfs.

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-HashFS 0.3.0 documentation

Changelog

v0.3.0 (2015-06-03)

	Replace manual proxy access of HashFS methods with single __getattr__ method.

v0.2.0 (2015-06-02)

	Pin hashfs dependency to >=0.3.0. (breaking change)

	Rename config key HASHFS_LENGTH to HASHFS_WIDTH to be in alignment with hashfs>=0.3.0. (breaking change)

v0.1.0 (2015-06-02)

	First release.

	Add FlaskHashFS.put.

	Add FlaskHashFS.get.

	Add FlaskHashFS.open.

	Add FlaskHashFS.delete.

	Add FlaskHashFS.url_for.

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-HashFS 0.3.0 documentation

Authors

Lead

	Derrick Gilland, dgilland@gmail.com, dgilland@github [https://github.com/dgilland]

Contributors

None

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Flask-HashFS 0.3.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dgilland/flask-hashfs/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” or “help wanted” is open to whoever wants to implement it.

Write Documentation

Flask-HashFS could always use more documentation, whether as part of the official Flask-HashFS docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dgilland/flask-hashfs/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up flask-hashfs for local development.

	Fork the flask-hashfs repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/flask-hashfs.git

	Install your local copy into a virtualenv. Assuming you have virtualenv installed, this is how you set up your fork for local development:

$ cd flask-hashfs
$ make build

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass linting (PEP8 [http://legacy.python.org/dev/peps/pep-0008/] and pylint) and the tests, including testing other Python versions with tox:

$ make test-full

	Add yourself to AUTHORS.rst.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the README.rst.

	The pull request should work for Python 2.7, 3.3, and 3.4. Check https://travis-ci.org/dgilland/flask-hashfs/pull_requests and make sure that the tests pass for all supported Python versions.

Project CLI

Some useful CLI commands when working on the project are below. NOTE: All commands are run from the root of the project and require make.

make build

Run the clean and install commands.

make build

make install

Install Python dependencies into virtualenv located at env/.

make install

make clean

Remove build/test related temporary files like env/, .tox, .coverage, and __pycache__.

make clean

make test

Run unittests under the virtualenv’s default Python version. Does not test all support Python versions. To test all supported versions, see make test-full.

make test

make test-full

Run unittest and linting for all supported Python versions. NOTE: This will fail if you do not have all Python versions installed on your system. If you are on an Ubuntu based system, the Dead Snakes PPA [https://launchpad.net/~fkrull/+archive/deadsnakes] is a good resource for easily installing multiple Python versions. If for whatever reason you’re unable to have all Python versions on your development machine, note that Travis-CI will run full integration tests on all pull requests.

make test-full

make lint

Run make pylint and make pep8 commands.

make lint

make pylint

Run pylint compliance check on code base.

make pylint

make pep8

Run PEP8 [http://legacy.python.org/dev/peps/pep-0008/] compliance check on code base.

make pep8

make docs

Build documentation to docs/_build/.

make docs

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Flask-HashFS 0.3.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	
 	
 flask_hashfs	

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Flask-HashFS 0.3.0 documentation

Index

 _
 | A
 | C
 | F
 | H
 | I
 | R
 | U

_

 	

 	__getattr__() (flask_hashfs.FlaskHashFS method)

A

 	

 	abspath (flask_hashfs.HashAddress attribute)

C

 	

 	client (flask_hashfs.FlaskHashFS attribute)

F

 	

 	flask_hashfs (module)

 	

 	FlaskHashFS (class in flask_hashfs)

H

 	

 	HashAddress (class in flask_hashfs)

I

 	

 	id (flask_hashfs.HashAddress attribute)

 	

 	is_duplicate (flask_hashfs.HashAddress attribute)

R

 	

 	relpath (flask_hashfs.HashAddress attribute)

U

 	

 	url_for() (flask_hashfs.FlaskHashFS method)

 Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Flask-HashFS 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up-pressed.png

_modules/hashfs/hashfs.html

 Navigation

 		
 index

 		
 modules |

 		Flask-HashFS 0.3.0 documentation »

 		Module code »

 Source code for hashfs.hashfs

"""Module for HashFS class.
"""

from collections import namedtuple
from contextlib import contextmanager, closing
from distutils.dir_util import mkpath
import glob
import hashlib
import io
import os
import shutil
from tempfile import NamedTemporaryFile

from .utils import issubdir, shard
from ._compat import to_bytes, walk

class HashFS(object):
 """Content addressable file manager.

 Attributes:
 root (str): Directory path used as root of storage space.
 depth (int, optional): Depth of subfolders to create when saving a
 file.
 width (int, optional): Width of each subfolder to create when saving a
 file.
 algorithm (str): Hash algorithm to use when computing file hash.
 Algorithm should be available in ``hashlib`` module. Defaults to
 ``'sha256'``.
 fmode (int, optional): File mode permission to set when adding files to
 directory. Defaults to ``0o664`` which allows owner/group to
 read/write and everyone else to read.
 dmode (int, optional): Directory mode permission to set for
 subdirectories. Defaults to ``0o755`` which allows owner/group to
 read/write and everyone else to read and everyone to execute.
 """
 def __init__(self,
 root,
 depth=4,
 width=1,
 algorithm='sha256',
 fmode=0o664,
 dmode=0o755):
 self.root = os.path.realpath(root)
 self.depth = depth
 self.width = width
 self.algorithm = algorithm
 self.fmode = fmode
 self.dmode = dmode

 def put(self, file, extension=None):
 """Store contents of `file` on disk using its content hash for the
 address.

 Args:
 file (mixed): Readable object or path to file.
 extension (str, optional): Optional extension to append to file
 when saving.

 Returns:
 HashAddress: File's hash address.
 """
 stream = Stream(file)

 with closing(stream):
 id = self.computehash(stream)
 filepath, is_duplicate = self._copy(stream, id, extension)

 return HashAddress(id, self.relpath(filepath), filepath, is_duplicate)

 def _copy(self, stream, id, extension=None):
 """Copy the contents of `stream` onto disk with an optional file
 extension appended. The copy process uses a temporary file to store the
 initial contents and then moves that file to it's final location.
 """
 filepath = self.idpath(id, extension)

 if not os.path.isfile(filepath):
 # Only move file if it doesn't already exist.
 is_duplicate = False
 fname = self._mktempfile(stream)
 self.makepath(os.path.dirname(filepath))
 shutil.move(fname, filepath)
 else:
 is_duplicate = True

 return (filepath, is_duplicate)

 def _mktempfile(self, stream):
 """Create a named temporary file from a :class:`Stream` object and
 return its filename.
 """
 tmp = NamedTemporaryFile(delete=False)

 if self.fmode is not None:
 oldmask = os.umask(0)

 try:
 os.chmod(tmp.name, self.fmode)
 finally:
 os.umask(oldmask)

 for data in stream:
 tmp.write(to_bytes(data))

 tmp.close()

 return tmp.name

 def get(self, file):
 """Return :class:`HashAdress` from given id or path. If `file` does not
 refer to a valid file, then ``None`` is returned.

 Args:
 file (str): Address ID or path of file.

 Returns:
 HashAddress: File's hash address.
 """
 realpath = self.realpath(file)

 if realpath is None:
 return None
 else:
 return HashAddress(self.unshard(realpath),
 self.relpath(realpath),
 realpath)

 def open(self, file, mode='rb'):
 """Return open buffer object from given id or path.

 Args:
 file (str): Address ID or path of file.
 mode (str, optional): Mode to open file in. Defaults to ``'rb'``.

 Returns:
 Buffer: An ``io`` buffer dependent on the `mode`.

 Raises:
 IOError: If file doesn't exist.
 """
 realpath = self.realpath(file)
 if realpath is None:
 raise IOError('Could not locate file: {0}'.format(file))

 return io.open(realpath, mode)

 def delete(self, file):
 """Delete file using id or path. Remove any empty directories after
 deleting. No exception is raised if file doesn't exist.

 Args:
 file (str): Address ID or path of file.
 """
 realpath = self.realpath(file)
 if realpath is None:
 return

 try:
 os.remove(realpath)
 except OSError: # pragma: no cover
 pass
 else:
 self.remove_empty(os.path.dirname(realpath))

 def remove_empty(self, subpath):
 """Successively remove all empty folders starting with `subpath` and
 proceeding "up" through directory tree until reaching the :attr:`root`
 folder.
 """
 # Don't attempt to remove any folders if subpath is not a
 # subdirectory of the root directory.
 if not self.haspath(subpath):
 return

 while subpath != self.root:
 if len(os.listdir(subpath)) > 0 or os.path.islink(subpath):
 break
 os.rmdir(subpath)
 subpath = os.path.dirname(subpath)

 def files(self):
 """Return generator that yields all files in the :attr:`root`
 directory.
 """
 for folder, subfolders, files in walk(self.root):
 for file in files:
 yield os.path.abspath(os.path.join(folder, file))

 def folders(self):
 """Return generator that yields all folders in the :attr:`root`
 directory that contain files.
 """
 for folder, subfolders, files in walk(self.root):
 if files:
 yield folder

 def count(self):
 """Return count of the number of files in the :attr:`root` directory.
 """
 count = 0
 for _ in self:
 count += 1
 return count

 def size(self):
 """Return the total size in bytes of all files in the :attr:`root`
 directory.
 """
 total = 0

 for path in self.files():
 total += os.path.getsize(path)

 return total

 def exists(self, file):
 """Check whether a given file id or path exists on disk."""
 return bool(self.realpath(file))

 def haspath(self, path):
 """Return whether `path` is a subdirectory of the :attr:`root`
 directory.
 """
 return issubdir(path, self.root)

 def makepath(self, path):
 """Physically create the folder path on disk."""
 mkpath(path, mode=self.dmode)

 def relpath(self, path):
 """Return `path` relative to the :attr:`root` directory."""
 return os.path.relpath(path, self.root)

 def realpath(self, file):
 """Attempt to determine the real path of a file id or path through
 successive checking of candidate paths. If the real path is stored with
 an extension, the path is considered a match if the basename matches
 the expected file path of the id.
 """
 # Check for absoluate path.
 if os.path.isfile(file):
 return file

 # Check for relative path.
 relpath = os.path.join(self.root, file)
 if os.path.isfile(relpath):
 return relpath

 # Check for sharded path.
 filepath = self.idpath(file)
 if os.path.isfile(filepath):
 return filepath

 # Check for sharded path with any extension.
 paths = glob.glob('{0}.*'.format(filepath))
 if paths:
 return paths[0]

 # Could not determine a match.
 return None

 def idpath(self, id, extension=''):
 """Build the file path for a given hash id. Optionally, append a
 file extension.
 """
 paths = self.shard(id)

 if extension and not extension.startswith(os.extsep):
 extension = os.extsep + extension
 elif not extension:
 extension = ''

 return os.path.join(self.root, *paths) + extension

 def computehash(self, stream):
 """Compute hash of file using :attr:`algorithm`."""
 hashobj = hashlib.new(self.algorithm)
 for data in stream:
 hashobj.update(to_bytes(data))
 return hashobj.hexdigest()

 def shard(self, id):
 """Shard content ID into subfolders."""
 return shard(id, self.depth, self.width)

 def unshard(self, path):
 """Unshard path to determine hash value."""
 if not self.haspath(path):
 raise ValueError(('Cannot unshard path. The path "{0}" is not '
 'a subdirectory of the root directory "{1}"'
 .format(path, self.root)))

 return os.path.splitext(self.relpath(path))[0].replace(os.sep, '')

 def repair(self, extensions=True):
 """Repair any file locations whose content address doesn't match it's
 file path.
 """
 repaired = []
 corrupted = tuple(self.corrupted(extensions=extensions))
 oldmask = os.umask(0)

 try:
 for path, address in corrupted:
 if os.path.isfile(address.abspath):
 # File already exists so just delete corrupted path.
 os.remove(path)
 else:
 # File doesn't exists so move it.
 self.makepath(os.path.dirname(address.abspath))
 shutil.move(path, address.abspath)

 os.chmod(address.abspath, self.fmode)
 repaired.append((path, address))
 finally:
 os.umask(oldmask)

 return repaired

 def corrupted(self, extensions=True):
 """Return generator that yields corrupted files as ``(path, address)``
 where ``path`` is the path of the corrupted file and ``address`` is
 the :class:`HashAddress` of the expected location.
 """
 for path in self.files():
 stream = Stream(path)

 with closing(stream):
 id = self.computehash(stream)

 extension = os.path.splitext(path)[1] if extensions else None
 expected_path = self.idpath(id, extension)

 if expected_path != path:
 yield (path, HashAddress(id,
 self.relpath(expected_path),
 expected_path))

 def __contains__(self, file):
 """Return whether a given file id or path is contained in the
 :attr:`root` directory.
 """
 return self.exists(file)

 def __iter__(self):
 """Iterate over all files in the :attr:`root` directory."""
 return self.files()

 def __len__(self):
 """Return count of the number of files in the :attr:`root` directory.
 """
 return self.count()

[docs]class HashAddress(namedtuple('HashAddress',
 ['id', 'relpath', 'abspath', 'is_duplicate'])):
 """File address containing file's path on disk and it's content hash ID.

 Attributes:
 id (str): Hash ID (hexdigest) of file contents.
 relpath (str): Relative path location to :attr:`HashFS.root`.
 abspath (str): Absoluate path location of file on disk.
 is_duplicate (boolean, optional): Whether the hash address created was
 a duplicate of a previously existing file. Can only be ``True``
 after a put operation. Defaults to ``False``.
 """
 def __new__(cls, id, relpath, abspath, is_duplicate=False):
 return super(HashAddress, cls).__new__(cls,
 id,
 relpath,
 abspath,
 is_duplicate)

class Stream(object):
 """Common interface for file-like objects.

 The input `obj` can be a file-like object or a path to a file. If `obj` is
 a path to a file, then it will be opened until :meth:`close` is called.
 If `obj` is a file-like object, then it's original position will be
 restored when :meth:`close` is called instead of closing the object
 automatically. Closing of the stream is deferred to whatever process passed
 the stream in.

 Successive readings of the stream is supported without having to manually
 set it's position back to ``0``.
 """
 def __init__(self, obj):
 if hasattr(obj, 'read'):
 pos = obj.tell()
 elif os.path.isfile(obj):
 obj = io.open(obj, 'rb')
 pos = None
 else:
 raise ValueError(('Object must be a valid file path or '
 'a readable object.'))

 self._obj = obj
 self._pos = pos

 def __iter__(self):
 """Read underlying IO object and yield results. Return object to
 original position if we didn't open it originally.
 """
 self._obj.seek(0)

 while True:
 data = self._obj.read()

 if not data:
 break

 yield data

 if self._pos is not None:
 self._obj.seek(self._pos)

 def close(self):
 """Close underlying IO object if we opened it, else return it to
 original position.
 """
 if self._pos is None:
 self._obj.close()
 else:
 self._obj.seek(self._pos)

 © Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

_modules/flask_hashfs.html

 Navigation

 		
 index

 		
 modules |

 		Flask-HashFS 0.3.0 documentation »

 		Module code »

 Source code for flask_hashfs

-*- coding: utf-8 -*-
"""The flask-hashfs module.

Flask extension for HashFS, a content-addressable file management system.
"""

from flask import current_app, request
from hashfs import HashFS, HashAddress

from .__meta__ import (
 __title__,
 __summary__,
 __url__,
 __version__,
 __author__,
 __email__,
 __license__
)

__all__ = (
 'FlaskHashFS',
 'HashAddress',
)

[docs]class FlaskHashFS(object):
 """Flask extension for storing files on file system using hashfs.

 Configuration values:

 ====================== ===
 ``HASHFS_HOST`` Host where files are served.

 Set if files are served from a different host than
 application.

 Defaults to ``None`` which uses
 ``flask.request.host_url``.
 ``HASHFS_PATH_PREFIX`` URL path prefix where files are served.

 Defaults to ``''``.
 ``HASHFS_ROOT_FOLDER`` Root folder to save files.

 Must be set.
 ``HASHFS_DEPTH`` Number of nested folders to use when saving files.

 Defaults to ``4``.
 ``HASHFS_WIDTH`` Width of each nested subfolder.

 Defaults to ``1``.
 ``HASHFS_ALGORITHM`` Hashing algorithm to use when computing content
 hash.

 Defaults to ``'sha256'``.
 ====================== ===
 """
 _extension_name = 'hashfs'

 def __init__(self, app=None):
 if app is not None:
 self.app = app
 self.init_app(app)
 else:
 self.app = None

 def init_app(self, app):
 # Flask specific config values.
 app.config.setdefault('HASHFS_HOST', None)
 app.config.setdefault('HASHFS_PATH_PREFIX', '')

 # HashFS specific config values.
 app.config.setdefault('HASHFS_ROOT_FOLDER', None)
 app.config.setdefault('HASHFS_DEPTH', 4)
 app.config.setdefault('HASHFS_WIDTH', 1)
 app.config.setdefault('HASHFS_ALGORITHM', 'sha256')

 if app.config['HASHFS_PATH_PREFIX'] is None:
 raise ValueError(
 'Missing configuration value for Flask-HashFS: '
 '"HASHFS_PATH_PREFIX" must be set')

 if (app.config['HASHFS_PATH_PREFIX'] and
 not app.config['HASHFS_PATH_PREFIX'].startswith('/')):
 raise ValueError(
 'Invalid configuration value for Flask-HashFS: '
 '"HASHFS_PATH_PREFIX" must start with a leading slash')

 if not app.config['HASHFS_ROOT_FOLDER']:
 raise ValueError(
 'Missing configuration value for Flask-HashFS: '
 '"HASHFS_ROOT_FOLDER" must be set')

 client = HashFS(app.config['HASHFS_ROOT_FOLDER'],
 depth=app.config['HASHFS_DEPTH'],
 width=app.config['HASHFS_WIDTH'],
 algorithm=app.config['HASHFS_ALGORITHM'])

 app.extensions[self._extension_name] = {
 'client': client
 }

 @property
 def config(self):
 return current_app.config

 @property
 def client(self):
 """Underlying :class:`HashFS` instance."""
 return current_app.extensions[self._extension_name]['client']

[docs] def url_for(self, relpath, external=True):
 """Return URL for path relative to ``HASHFS_ROOT_FOLDER``.

 Args:
 relpath (str): Relative path to ``HASHFS_ROOT_FOLDER`` where file
 is located.
 external (bool): Whether to include host in URL.

 Returns:
 str: URL for path.

 Note:
 This function builds the URL with the assumption that `relpath` is
 a valid file path. It does not check for file existence.
 """
 paths = ['/', self.config['HASHFS_PATH_PREFIX'], relpath]

 if external:
 paths.insert(0, self.config['HASHFS_HOST'] or request.host_url)

 return urljoin(*paths)

[docs] def __getattr__(self, attr):
 """Proxy all other attribute access to underlying HashFS instance.

 Please see http://hashfs.readthedocs.org/ for further details.
 """
 return getattr(self.client, attr)

def urljoin(*paths):
 """Join delimited path using specified delimiter.

 >>> assert urljoin('') == ''
 >>> assert urljoin('/') == '/'
 >>> assert urljoin('', '/a') == '/a'
 >>> assert urljoin('a', '/') == 'a/'
 >>> assert urljoin('', '/a', '', '', 'b') == '/a/b'
 >>> ret = '/a/b/c/d/e/'
 >>> assert urljoin('/a/', 'b/', '/c', 'd', 'e/') == ret
 >>> assert urljoin('a', 'b', 'c') == 'a/b/c'
 >>> ret = 'a/b/c/d/e/f'
 >>> assert urljoin('a/b', '/c/d/', '/e/f') == ret
 >>> ret = '/a/b/c/1/'
 >>> assert urljoin('/', 'a', 'b', 'c', '1', '/') == ret
 >>> assert urljoin([]) == ''
 """
 paths = [path for path in paths if path]

 if len(paths) == 1:
 # Special case where there's no need to join anything.
 # Doing this because if paths==['/'], then an extra '/'
 # would be added if the else clause ran instead.
 path = paths[0]
 else:
 leading = '/' if paths and paths[0].startswith('/') else ''
 trailing = '/' if paths and paths[-1].endswith('/') else ''
 middle = '/'.join([path.strip('/')
 for path in paths if path.strip('/')])
 path = ''.join([leading, middle, trailing])

 return path

 © Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Flask-HashFS 0.3.0 documentation »

 All modules for which code is available

		flask_hashfs

		hashfs.hashfs

 © Copyright 2015, Derrick Gilland.
 Created using Sphinx 1.3.5.

